Characterization of local rings
نویسندگان
چکیده
منابع مشابه
ساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings
فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...
A class of Artinian local rings of homogeneous type
Let $I$ be an ideal in a regular local ring $(R,n)$, we will find bounds on the first and the last Betti numbers of $(A,m)=(R/I,n/I)$. if $A$ is an Artinian ring of the embedding codimension $h$, $I$ has the initial degree $t$ and $mu(m^t)=1$, we call $A$ a {it $t-$extended stretched local ring}. This class of local rings is a natural generalization of the class of stretched ...
متن کاملCharacterization of $(delta, varepsilon)$-double derivation on rings and algebras
This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...
متن کاملA Graphical Characterization for SPAP-Rings
Let $R$ be a commutative ring and $I$ an ideal of $R$. The zero-divisor graph of $R$ with respect to $I$, denoted by $Gamma_I(R)$, is the simple graph whose vertex set is ${x in Rsetminus I mid xy in I$, for some $y in Rsetminus I}$, with two distinct vertices $x$ and $y$ are adjacent if and only if $xy in I$. In this paper, we state a relation between zero-divisor graph of $R$ with respec...
متن کاملCharacterization of $delta$-double derivations on rings and algebras
The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1967
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243246